・場所:The Omni Hotel, 1050 Sherbrooke St. W, Montreal, QC H3A 2R6, adjacent to the Mcgill Main Campus
・セッション&テーマ:Health Innovation through genomics
・講演タイトル:Genome cohort projects in Japan and biomedical analyses towards  discoveries of diseases causing variants

Kyoto-Mcgill International Collaborative Program in Genomic Medicine



・日時:令和元年9月8日(日)シンポジウム 10:10~10:25
・場所:U110 東京コンベンションホール
・セッション&テーマ:Genomics in Cardiology
・講演タイトル:Development and application of biomedical methods to facilitate the detection of disease-causing variants based on whole genome data from Japanese



8月28日(水)長﨑教授がGenome Expo 2019にて招待講演を行いました。

・日時:令和元年8月28日(水)招待講演 10:30~11:00
・場所:U110, Engineering Bldg. 4, UNIST, Ulsan, Korea
・セッション&テーマ:International Symposium on Human Genomics
・講演タイトル:Genome cohort projects in Japan and biomedical analyses toward the discoveries of disease-causing variants





・日時:平成29年12月14日(木) 18:00-19:30
1. 共同研究の進捗説明 長崎正朗教授

2. 講師:佐々木雅英先生(国立研究開発法人 情報通信研究機構)

3. 講師:佐藤英昭研究主幹(株式会社東芝 研究開発本部 研究開発センター)
概要:量子暗号通信は、究極の安全性を実現する暗号通信システムで、将来にわたって通信データを解読できない暗号通信を実現することが可能です。 東芝では、英国の東芝欧州研究所ケンブリッジ研究所で開発した量子暗号通信技術の実用化に向けた取組みを進めており、ゲノム解析データの送信実験を東北大学との共同研究として2015年から実施しています。本講演では、共同研究成果の概要と量子暗号通信装置の最新の研究開発状況をご説明するとともに、量子暗号通信を活用したシステムの将来構想についても言及します。

4. セキュリティの重要性 高井貴子准教授 

5. 閉会の挨拶 長神風二特任教授  



‌三澤計治助教が 日本人類遺伝学会 第62回大会 にてポスター発表(2017/11/16)

11月16日(木)‌三澤計治助教が 日本人類遺伝学会 第62回大会 にてポスター発表を行います。

・日時:平成29年11月16日(木) 18:10-19:10

日本人類遺伝学会 第62回大会


第83回インシリコ・メガバンク研究会を下記のとおり行いますのでご案内いたします。今回は大阪大学微生物病研究所・Daron Standley先生を講師としてお迎えし、「Quantifying structural and functional convergence in immune cell repertoires」というタイトルで講演していただきます。

・日時:平成29年9月19日(火) 17:00-18:30 
・演題:Quantifying structural and functional convergence in immune cell repertoires  ・講師:Daron Standley (大阪大学微生物病研究所)


・概要: It is well established that protein structure is more conserved than sequence on an evolutionary timescale.  This fact allows functional inferences to be drawn from proteins that share the same fold, even when their sequence similarity is quite low. In the case of B cell receptors, the relationships between sequence and structure and function are more complex. Most BCRs look similar globally but differ in the details of their antigen-binding regions. These differences are due to the fact that each BCR is assembled from a patchwork of genes, which are combined randomly and can be further diverged by random mutations upon antigen encounter. Traditionally, bioinformatics analysis of BCR sequences involves clustering those that arise from the same genes into “lineages”, in order to identify BCRs in a given donor that target a common antigen.  The diversity of BCRs has been estimated to exceed 1013 in humans, which means that it is very unlikely that any two donors will display the same repertoire of BCRs, even after exposure to the same antigen. Nevertheless, x-ray crystallographic studies have demonstrated that structurally and sequentially similar BCRs targeting common antigens can arise in different donors using different genes. Our hypothesis is that clusters of BCRs targeting the same antigen are more likely to have sequence and structural features in common than BCRs targeting different antigens. High-throughput sequencing methodologies can now deliver paired (heavy-light chain) sequence datasets on the order of 104 sequences per experiment, and are expected to improve rapidly in the near future. Clearly, x-ray crystallography will not be able to cope with so many emerging BCR sequences in a high-throughput manner. Thus, there is a strong motivation to leverage structural bioinformatics in order to infer structure and functional similarities. In this presentation, I will show results from our high-throughput BCR and TCR structural modeling platform (Si Repertoire Builder). Using multiple alignment and 3D rendering methods developed in our lab, we could reduce the time required to build an atomic-resolution BCR model to just seconds, corresponding to over 17,000 atomic resolution models per day on a single CPU. We then show that human BCRs acquired post flu vaccination display strong structural convergence, and even exhibit structural similarities to BCRs acquired from vaccinated mice. These findings suggest that BCR modeling, in combination with high-throughput sequencing may be able to identify diverse sequences targeting common antigens across donors and across species.